1.2. Относительность движения
Движение тел можно описывать в различных системах отсчета. С точки зрения кинематики все системы отсчета равноправны. Однако кинематические характеристики движения, такие как траектория, перемещение, скорость, в разных системах оказываются различными. Величины, зависящие от выбора системы отсчета, в которой производится их измерение, называют относительными.
Пусть имеются две системы отсчета. Система
Рисунок 1.2.1. |
Пусть человек перешел по платформе за некоторое время из точки
В случае, когда одна из систем отсчета движется относительно другой поступательно (как на рис. 1.2.1) с постоянной скоростью это выражение принимает вид:
Если рассмотреть перемещение за малый промежуток времени
(*) |
Здесь – скорость тела в «неподвижной» системе отсчета
Соотношение (*) выражает классический закон сложения скоростей:
Абсолютная скорость тела равна векторной сумме его относительной скорости и переносной скорости движущейся системы отсчета.
Следует обратить внимание на вопрос об ускорениях тела в различных системах отсчета. Из (*) следует, что при равномерном и прямолинейном движении систем отсчета друг относительно друга ускорения тела в этих двух системах одинаковы, т. е. Действительно, если – вектор, модуль и направление которого остаются неизменными во времени, то любое изменение относительной скорости тела будет совпадать с изменением его абсолютной скорости. Следовательно,
Переходя к пределу (
В общем случае, при движениях систем отсчета с ускорением друг относительно друга, ускорения тела в различных системах отсчета оказываются различными.
В случае, когда вектора относительной скорости и переносной скорости параллельны друг другу, закон сложения скоростей можно записать в скалярной форме:
В этом случае все движения происходят вдоль одной прямой линии (например, оси